NASA High Performance Computing Summer School

Satellite Protection

James Holdener

July 24, 2003

Outline

- Introduction
- Overview
- Some Details
- Possible Collaborations
- The Road Ahead

Introduction

The Issue

- Energetic particles and energy fluxes
 - Prevalent throughout near Earth orbits
 - Highly variable
 - Determined by Solar activity
 - Major factor in satellite life
 - ? Can be predicted?
- Satellite Operations can mitigate the effects
 - Resets
 - Power down
 - Attitude control
 - Orbit change

Motivation

- High energy particles
 - Satellite disorientation
 - Damage to solar power cells
 - Single event upsets
 - Processor latchup
 - Space craft and sensor damage
 - False sensor readings

- Low energy particles
 - Satellite Communication interference
 - Satellite orbit decay
 - Radar false targets
 - Electrical power grid failure
 - Geolocation errors
 - HF interference

Protecting our Satellite Fleet

- Predictions would be beneficial
 - Occurrence
 - Effects of interactions
 - Based on individual satellites
- Results
 - Increased lifetime
 - Reduced immature failure

Plan for modeling the occurrence of interactions and assessing the lifetime of Satellites

Benefits to NASA

- Provide new research in predictive capability for solar particle events
- Address goal to advance and communicate scientific knowledge and understanding of Earth, the environment of space, the solar system, and the universe
 - Increase understanding of Solar-Earth system
- Address goal to explore, use, and enable the development of space for human enterprise
 - Provide predictive capability for satellite operations

Overview

Overall Project Discussion

- Integrate code from several areas
 - Sensor Input
 - Space Weather
 - Magnetization Physics
 - Energy Interactions
 - Orbitology
 - Energetic Particle Deposition and Degradation
- Update models
- Provide visualization to NOAA
- Real Time Computation
- Interface to Sensor and Satellite Operators
- Forecasting

Integrate -- Update -- Visualize -- Predict

Source: Space Environment Center Homepage

Energetic Particle Map

Focus

• Output

- 3-day to 1 hour predictions
- Updated in real-time

Issues

- Relativistic energy here as we measure it
- Solar wind about 3 days
- 3-4 days to do computations

Conclusion

- Must forecast from solar activity
- Then update with
 - Observed solar activity
 - Measured solar wind

Some Details

Desired Results

- Modular Computational System
 - Ingest CME/Flare data
 - CME propagation modules
 - MHD + PIC Magnetosphere module coupled to Ionosphere model
 - Collect particle fluxes and energy distribution
 - Visualization
 - 3-day Forecasts
 - Material Effects

- Interactive mapper on NOAA SEC site
- "Accurate" 5-D energy flux predictions
- Notification Service

Simple Representation

Overview

Areas of Opportunity

- Only crude propagation models exist
- Real time generally not supported
- Many dispersed efforts
- Accuracy, Reliability, Believability
- Interactions with existing satellite fleet

Lots of models available Varying degrees of realism

Possible Collaborations

Related Projects

- Center for Integrated Space Weather Modeling (BU)
- Space Weather
 Modeling Framework
 (University of Michigan)
- Earth System Modeling Framework

AFRL

 Reproduce variability of 0.5 MeV electron flux with time-dependent diffusion model and suitable boundary conditions

NASA

- CME arrival prediction
- Couple of magnetosphere and ionosphere codes
- Provide data for ACE, GOES,
 Polar satellite sensor suits

NOAA

- PROTONS model
- Future Plans by NASA
 - Radiation belt mapper satellites
 - Energetic particle modeling

CISM

Source: Boston University

SWMF

The Road Ahead

Current Work

- Collaborate with current efforts
- Integrate orbitology
- Integrate effects
- Tune for Real Time operations
- Ingest actual data
- Prediction

The Future

- New sensors
- Improved space weather codes
- Improved understanding of effects
- Increased automation
- Better understanding of solar phenomena
- Forecasting models